If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.5x^2-40x+250=0
a = -0.5; b = -40; c = +250;
Δ = b2-4ac
Δ = -402-4·(-0.5)·250
Δ = 2100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2100}=\sqrt{100*21}=\sqrt{100}*\sqrt{21}=10\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-10\sqrt{21}}{2*-0.5}=\frac{40-10\sqrt{21}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+10\sqrt{21}}{2*-0.5}=\frac{40+10\sqrt{21}}{-1} $
| 7+0.30p=5+0.20p | | m²—8m+9=0 | | 1/8a=1/3. | | 11+7x=74 | | 229=45-v | | -x+13=-7+3x | | h=-35 | | 7+0.20p=5p+0.30 | | −3x–10=13 | | b+-45=-310 | | 90=(2x+20)+3x | | 2+2h=16 | | 16×n=96 | | -328=-8(6n-7) | | 6x-8+3x-5x-20=540 | | 7(w+5)=19 | | 4(k-3)=2k | | 5d^2+21d=10d+35 | | 2x+8=7x-12= | | 12x=14+3x | | 6(d+2)=60 | | 4/8p=9/4-3/8 | | 9-7n=50 | | g-168=332 | | 24-5t=173 | | 2x-9=-x+-6 | | 12=-x/2+10 | | 6+2n=50 | | 2(8x-25)=(10x+44) | | -13=-6-6a+5 | | 1=z-89/9 | | 3x-9=-5+23= |